Accelerating Distributed SGD With Group Hybrid Parallelism
نویسندگان
چکیده
منابع مشابه
Accelerating SGD for Distributed Deep-Learning Using Approximated Hessian Matrix
We introduce a novel method to compute a rank m approximation of the inverse of the Hessian matrix in the distributed regime. By leveraging the differences in gradients and parameters of multiple Workers, we are able to efficiently implement a distributed approximation of the Newton-Raphson method. We also present preliminary results which underline advantages and challenges of secondorder meth...
متن کاملAccelerating Sgd for Distributed Deep- Learning Using Approximted Hessian Matrix
We introduce a novel method to compute a rank m approximation of the inverse of the Hessian matrix in the distributed regime. By leveraging the differences in gradients and parameters of multiple Workers, we are able to efficiently implement a distributed approximation of the Newton-Raphson method. We also present preliminary results which underline advantages and challenges of secondorder meth...
متن کاملRevisiting Distributed Synchronous SGD
Distributed training of deep learning models on large-scale training data is typically conducted with asynchronous stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the synchronous approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional bel...
متن کاملStochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure
In this work we consider the stochastic minimization of nonsmooth convex loss functions, a central problem in machine learning. We propose a novel algorithm called Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD), which exploits the structure of common nonsmooth loss functions to achieve optimal convergence rates for a class of problems including SVMs. It is the first stochastic algori...
متن کاملAccelerating a fluvial incision and landscape evolution model with parallelism
Solving inverse problems and achieving statistical rigour in landscape evolution models requires running many model realizations. Parallel computation is necessary to achieve this in a reasonable time. However, no previous algorithm is well-suited to leveraging modern parallelism. Here, I describe an algorithm that can utilize the parallel potential of GPUs, many-core processors, and SIMD instr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3070012